Aditya Group of Degree Colleges

ADITYA DEGREE COLLEGES

* ANDHRA PRADESH * PRE-FINAL - EXAMINATIONS III B.SC :: MATHEMATICS - VI BI ADVANCED NUMERICAL ANALYSIS Max. Marks : 75 M

Date: 26.03.2020

Time:3hrs

SECTION-A

I. Answer any FIVE of the following questions:

 $5 \times 5 = 25 M$

1. Write the exponential curve $y = ae^{bx}$ to the following data

х	1	5	7	9	12
У	10	15	12	15	21

2. From the following table, find the value of x for which 'y' is maximum and the find the value of 'y'

x	1.2	1.3	1.4	1.5	1.6
У	0.9320	0.9636	0.9855	0.9975	0.9996

- 3. Derive Trapezoida Rule.
- 4. Solve the equation $2x_1 + x_2 + x_3 = 10$, $3x_1 + 2x_2 + 3x_3 = 18$, $x_1 + 4x_2 + 9x_3 = 16$ by Gauss elimination method.
- 5. Solve the equations Gauss- Jordan method 10x + y + z = 12, 2x + 10y + z = 13and x + y + 5z = 7
- 6. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Simpson's 3/8 rule
- 7. Using Euler Maclaurin's formula that $\sum_{n=1}^{n} n^2 = \frac{n(n+1)(2n+1)}{6}$

8. Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$ for x=0.4 given that y=0 when x=0

ADC-RJY

II. Answer the following questions:

$5 \times 10 = 50 M$

9. a) Derive the normal equations to fitting a staright line by the method of least squares.

(**O**r)

b) Fit asecond degree polynomial to the following data by least square method.

х	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

10. a) Find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ at x=0 using the table

x	0	2	4	6	8	10
f(x)	0	12	248	1284	4080	9980

(**O**r)

b) Find $f^{1}(2.5)$ from the following table

x	1.5	1.9	2.5	3.2	4.3	5.9
f(x)	3.375	6.059	13.625	29.368	73.907	196.579

11. a) Evaluate the value of the integral $\int_{0}^{1} \frac{dy_{x}}{1+x^{2}} by using Simpson's 3/8 rule.$ Hence obtain

3x + 2y + 4z = 7;

the approximate value of π

(**O**r)

- b) State and prove Simpson's 1/3 rule.
- 12. a) Solve the equations

by L-U decomposition method.

(**O**r)

b) Solve the following system of equations

27x + 6y - z = 85; 6x + 15y + 2z = 72; x + y + 54z = 110 by Gauss seidal method.

13.a) Find y(2.2) by using modified Euler's method for $\frac{dy}{dx} = -xy^2$ where y(2)=1

(**O**r)

b) Given $\frac{dy}{dx} = y - x$ with y(0) = 2 find y(0.1) = 2 and y(0.2) correct to four decimal places by using Rungekutta method.